Carbon on your Farm - Soil Health & Salinity Update

Coomandook 2.00 - 6.00pm

followed by Ag Bureau Meeting Includes BBQ tea

Wednesday 6th April 2022

REGISTRATIONS essential: tstrugnell@coorong.sa.gov.au or

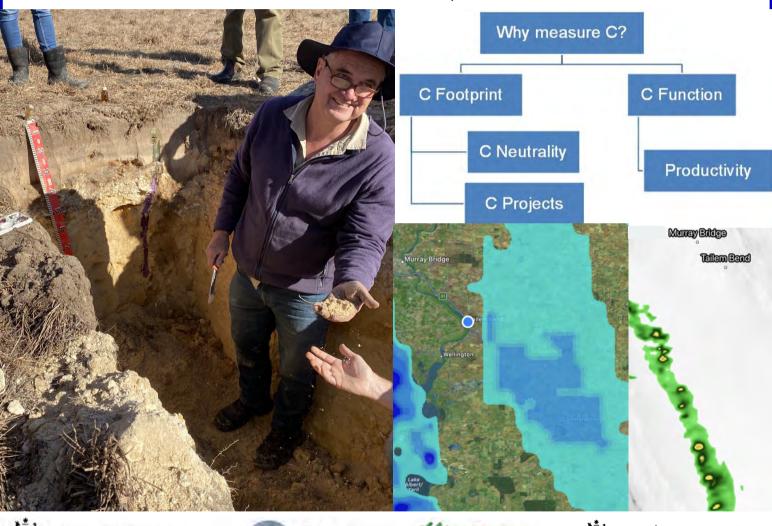
text on 0427 750 050

Register by Friday 1st of April

Roby update – Automated Weather Station, Soil Moisture Probe & Groundwater Piezometer

3 soil pits identifying limitations & management options

Overview of carbon flow in local farm businesses


See program below/on back Drop in to sessions of interest

Soil Carbon Baseline levels in SA and the potential to build soil carbon

BBQ Tea & Coomandook Ag Bureau Meeting

Key Note Speaker at Ag Bureau Meeting: Darren Ray Applied Consulting Climatologist

Building climate knowledge and looking at seasonal variability in our district

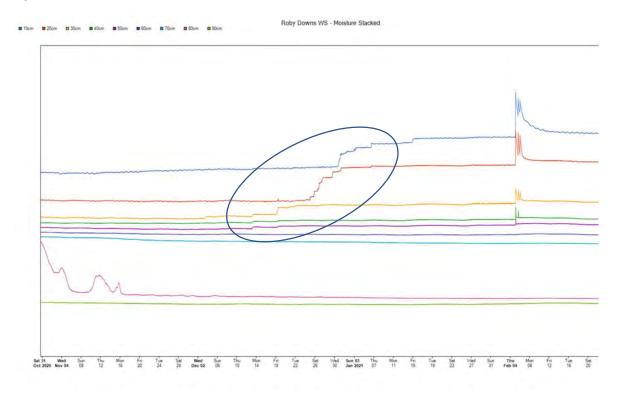
This project is supported by FRRR, through funding from the Australian Government's Future Drought Fund

This project is supported by the Murraylands and Riverland Landscape Board and the Limestone Coast Landscape Board through funding from the Australian Government's National Landcare Program and the landscape levies

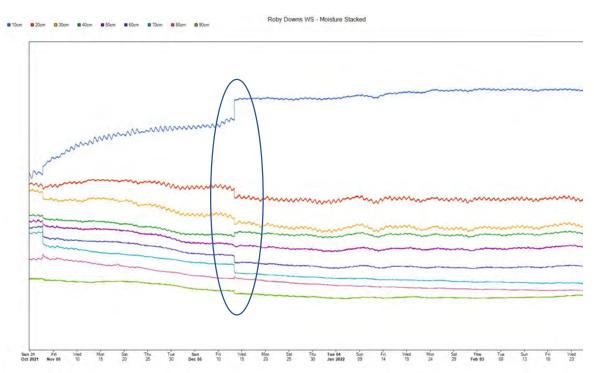
Coomandook: Carbon on your Farm – Soil Health & Salinity Update Wednesday 6th April 2022

2.00pm - 6.00pm

Followed by BBQ & Coomandook Ag Bureau Meeting

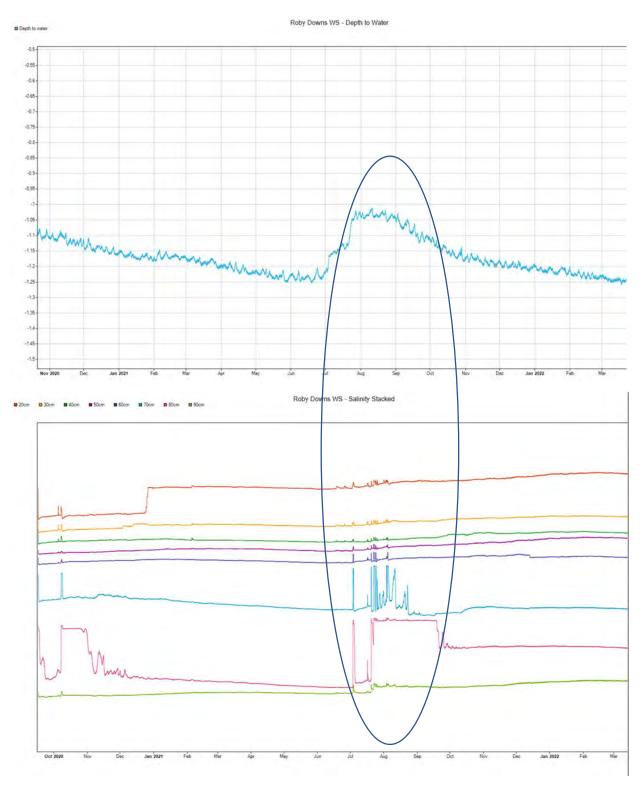

Stop	Item	Speaker	Organisation	Location		Time	Pages
1	MEETING POINT 'Roby Downs' 601 Goodale Road COOMANDOOK At the Sheds	WELCOME & OVERVIEW OF THE DAY				2.00pm	
2	Data update from Roby Downs – Automated Weather Station / Soil Probe / Groundwater Piezometer	Felicity Turner	Coorong Tatiara Local Action Plan Independent Advisor	'Roby Downs' – Cn Highway & Goodale COOMANDOOK		2.10pm – <i>2.30pm</i>	3 - 5
3	Three Soil Pits across Soil Types	Brian Hughes	PIRSA Rural Solutions			2.30pm – <i>3.45pm</i>	6 - 18
	Looking at soil tests results &		Principal Land				
	interpretation, production limitations, soil carbon, non wetting sands, salinity & management options	Amanda Schapel	Management Consultant				
	Travel to			Coomandook Uniti	ing Church		
	AFTERNOON TEA						
3	An overview of carbon flow in local farm businesses in our landscape	Felicity Turner	Turner Agribusiness Field	Coomandook Uniti Meeting Room	ng Church	4.15pm – 4.45pm	
4	Soil, Carbon and Productivity Soil Carbon Baseline Levels Carbon Building Projects in SA Where to from here?	Amanda Schapel	PIRSA Rural Solutions Carbon Specialist			4.45pm – <i>5.45pm</i>	19 - 20
5	Questions					5.45pm – <i>6.00pm</i>	
	BBQ TEA SUPPLIED FOLLOWED BY COOMANDOOK AG BUREAU MEETING	SPECIAL GUEST SPEAKER	· · · · · · · · · · · · · · · · · · ·	Iting Climatologist	Climate Knowledge Local Seasonal Vari		

Felicity Turner on behalf of Coorong Tatiara Local Action Plan


Last summer (2020-21) saw moisture rising from the surface from depth. This year (2021-22) the same level of moisture increase wasn't observed with the differences being much more subtle resulting in transfer of moisture from depth into the top 10cms.

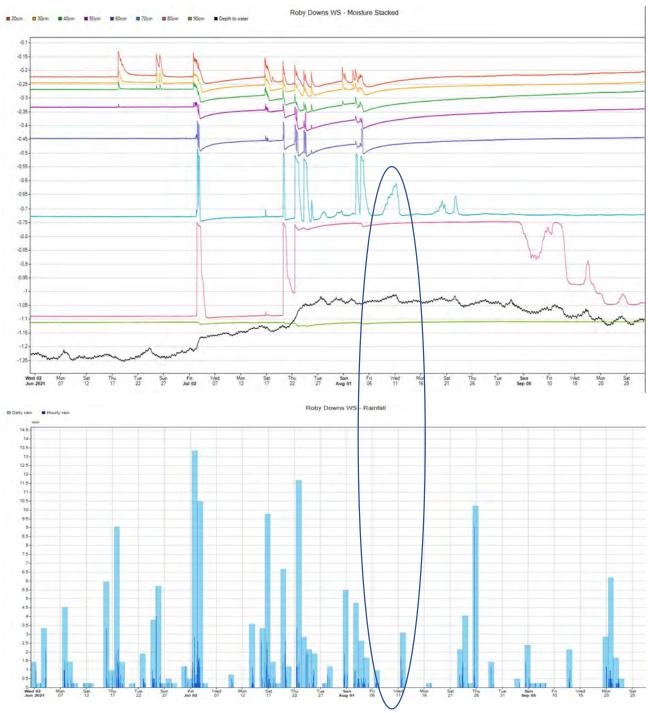
It is thought that maybe in the process of installing the probe and disturbing the surface site the natural processes may have been exacerbated. It has however given us a greater insight into the potential processes that are occurring under the ground.

2021



2022

WATER TABLE


The water table has risen by about 25cms since the automated depth sensor was installed. The rise was over winter and it then subsided. It is currently sitting 5cms lower than this time last year. This seasonal variation is likely to be highly rainfall dependent and it will be interesting to observe changes over a long period of time.

The rise in water table during July and August saw an increase in soil moisture at 80cms and an increase in the salinity level of the soil. As the water table subsided, it left behind salts in the 80cm zone.

The lack of movement in moisture at 90cms suggests that this soil layer is in the saturated water table zone constantly.

SOIL MOISTURE - WINTER

The above graphs show the impact of rainfall events on the soil moisture probe data during the winter months, and how far the events penetrate into the soil. Of particular interest is the rise in the 80cm sensor and more particularly the 70cm sensor in the absence of rainfall suggesting that this has been due to the groundwater rising during this time. This is reflected by increases in the depth to water sensor.

The on-going monitoring of this data has been made possible by the Coorong Saltland Pasture Redemption project funded by the Murraylands and Riverland Landscape Board.

BRIAN HUGHES & AMANDA SCHAPEL - PIRSA

General Description: Brown loamy sand over sandy clay over calcrete grading to highly calcareous pale

brown sandy light clay.

Landform: Dunefield, low slope

Substrate: Molineaux sand over Bungunnia

Limestone over ancient coastal

sanddunes and old lake beds

Vegetation: Barley grass, some clover

Land use: grazing

Type Site: Site No: 1 Easting: 0378558

Hundred:RobyNorthing:6080797Sampling date:9 July 2021Annual rainfall:410 mm

Soil Description

Depth (cm)	Horizon	Description
0-10	A1	Brown loose loamy sand. Clear to:
10-20	A2	Light brown sand with 2-10% segregations, 6-20 mm in size. Abrupt to:
20-40	B21	Reddish yellow very highly calcareous fine sandy light clay. Sharp to:
40-50	B22K	laminar calcrete cap with very pale brown very highly calcareous sandy light clay with. Gradual to:
50-80	B22K	Very pale brown very highly calcareous sandy light clay with <2% calcareous segregations, 2-6 mm in size. Gradual to:
80-100	В3	Pale brown coarse sandy clay loam
100 +		watertable at 90-100cm

Summary of Properties

Drainage: well drained, although water-table at base

Fertility: moderately low. Regular fertiliser input required and some trace elements for higher production

pH: Neutral surface, grading to strongly alkaline in subsoil

Rooting depth: depend on salt tolerance 50? cm

Barriers to root growth

Physical: calcrete restricts to some extent

high pH and Boron from 20cm, moderate surface salt to high salt throughout, sodic from 10cm, EC 6 +

Chemical: dS/m restricts many plants

Water holding capacity: depends on salinity levels

Seedling emergence: slightly water repellent can affect germination

Workability: easily worked

Erosion potential

Water: low

Wind: moderately low

(cm)	120	420 aCl ₂	ıg/kg	dS/m	ay.	%	= 1	Col	well	mg/kg	тд/кд	Trac	e Elements mg/kg (DPTA)		
Depth (cm)	pH H ₂ O	pH CaCl ₂	NO3 mg/kg	EC 1:5 dS/m	EC	% oc %	PBI	Avail.	Avail. K	Boron mg/kg	SO4-S mg/kg	Cu	Zn	Fe	Mr
0-10	7.6	7.6	- 21	0.37	6	1.5	21	59	250	1.2	17	0.94	3.5	28	- 3
10-20	9.2	9.2	29	0.81	12	0.3	38	45	370	12	68	0.51	0.4	17	0.4
20-50	9.3	9.3	23	2	16	0.2	99	23	530	19	200	0.61	0.2	9.5	0.6
50-80	9.3	9,3	6.9	2.2	18	0.3	141	<5	480	16	230	0.41	0.23	6.9	0.5
80-110	9.4	9.4	2.4	2	18	0.2	106	<5	410	12	190	0.28	0.28	6.7	0.9
Critical / Ideal values	6-8	5-7	÷	<0.7	<4	S: 0.5-1.0 SL: 0.7- 1.4 L: 0.9-1.8 CL/C: 1.2-2.0	20- 120	25- 30	100	<15	>6- 8	0.3	0.5		1

Depth (cm)	Cl mg/k	Sum cations	Exchangeable cations cmol (+)/kg				ESP	Dispe	rsion	Calcium
Dept	CI	cmol (+)/kg	Ca	Mg	Na	К	20.	2 hrs	20 hrs	Equix %
0-10	150	7.5	6.4	0.8	0.1	0.4	1	0	0	< 0.4
10-20	610	5.6	3.5	1.1	0.6	0.4	11	2	2	<0.4
20-50	2300	14	8.5	2.9	1.7	1	12	0	0	7.4
50-80	2800	14.6	9	3.2	1.5	1	10	0	0	23
80-110	2300	12.3	7.9	2.7	1	0.7	8	0	0	25
Critical / Ideal values	S: <120 L: <200 C: <300	15	75% of CEC	20% of CEC	<6% of CEC	5% of CEC	<6-15			

General Description: Shallow dark brown sandy loam over brown clay grading to highly calcareous light to medium

clay.

Landform: Dunefield, flat, bare salt affected

Substrate: Molineaux sand over Bungunnia Limestone

over ancient coastal sanddunes and old

lake beds

Vegetation: Bare

Land use: grazing

Type Site: Site No: 1S

Hundred: Roby

Sampling date: 9 July 2021

watertable at 40cm

Easting: 0378555

Northing: 6080809

Annual rainfall: 410 mm

Soil Description

Depth (cm)	Horizon	Description
0-5	A1	Dark brown sandy loam with yellow and red mottling. 10-20% segregations, 6-20 mm in size.
5-25	B2	Strong brown very highly calcareous medium clay with gray mottling.
25-40	B21K	Light yellowish brown very highly calcareous coarse sandy light clay.
40-65	B22K	Very pale brown very highly calcareous light clay with yellow mottling.
65-95	2B21	Very pale brown highly calcareous medium clay with yellow and red mottling. 10-20% nodules, >60 mm in size.
95-110	2B22	Very pale brown highly calcareous medium clay with yellow and red mottling. 10-20% nodules, >60 mm in size.

Summary of Properties

Drainage: imperfectly drained, soil may remain wet for several weeks

Fertility: moderate fertility as indicated by CEC, regular P required, although very high at this site now.

Surface levels of many nutrients are high linked to salinity issue

pH: alkaline surface to strongly alkaline subsoil

Rooting depth: 40 cm to water table although highly saline at surface

Barriers to root growth

Physical: medium clay would provide some restriction

Chemical: surface salinity EC 49 dS/m which allows only extremely salt tolerant plants or mostly bare ground, B at

toxic levels

Water holding capacity: n/a

Seedling emergence: fine provided salinity overcome

Workability: satisfactory although underlying clay quite shallow

Erosion potential

Water: low

Wind: low

Laboratory Data

Ê	750 1	2	6 g	E				Col	well	mg/kg	mg/kg	Trace	Elements	mg/kg (DPTA)
Depth (cm)	pH H ₂ O	pH CaCl ₂	NO3 mg/kg	EC 1:5 dS/m	ECe	% 50	B	Avail, P mg/kg	Avail, K mg/kg	Boron mg	SO ₄ -S mg	Cu	Zn	Fe	Mn
0-5	8.85	8.56	28	4.1	49	1.02	108	140	520	41	710	1.3	2.6	19	2.4
5-25	9.12	8.64	24	3.3	26	0.34	96	50	720	23	190	0.57	0.42	17	0.6
25-40	9.38	8.62	11	2	16	0.27	165	10	540	13	160	0.51	0.19	7.9	0.4
40-65	9.39	8.61	7.7	1.8	14	0.22	127	<5	520	-11	150	0.45	0.5	8,6	0.6
65-95	9.34	8.52	6.2	1.7	14	0.22	112	<5	540	13	150	0.41	1.1	11	2.1
95-110	9.37	8.43	4.9	1.5	12	0.19	118	<5	590	12	150	0.42	1.3	12	5.1
Critical / Ideal values	6-8	5-7	:4>	<0.7	<4	S: 0.5-1.0 SL: 0.7-1.4 L: 0.9-1.8 CL/C: 1.2-2.0	20- 120	25-30	100	<15	>6-8	0.3	0.5		1

Depth (cm)	CI mg/k	Sum cations	Exch	angeable c	ations cmol	(+)/kg	ESP	Dispe	ersion	Calcium carbonate
	O	cmol (+)/kg	Ca	Mg	Na	К		2 hrs	20 hra	Equiv %
0-5	4900	13.4	6.72	4.68	0,92	1.07	7	0	1	1.5
5-25	4600	13.6	7.01	3.09	2.35	1.19	17	0	0	3.6
25-40	2500	18.4	10.4	4.56	2.09	1.37	11	0	1	27
40-65	2200	15.4	8.89	3.92	1.51	1.06	10	0	0	23
65-95	2000	14.7	8.27	3.78	1.59	1.05	11	0	0	25
95-110	1900	14.7	8.19	3.7	1.73	1.06	12	0	0	28
Critical / Ideal values	S: <120 L: <200 C: <300	15	75% of CEC	20% of CEC	<6% of CEC	5% of CEC	<6			

General Description: Thick brown loamy sand over sandy light clay over a laminar calcrete at depth.

Landform: Dune, low slope

Substrate: Molineaux sand over Bungunnia

Limestone over ancient coastal

sanddunes and old lake beds

Vegetation: Cereal stubble

Land use: Cropping

Site Details: Site No: 2G Easting: 0378580

> **Hundred:** Northing: 6080801 Roby Sampling date: 9 July 2021 Annual rainfall: 410 mm

Soil Description

JOH Descrip	0011	
Depth (cm)	Horizon	Description
0-12	A1	Brown slightly calcareous loamy sand.
12-30	A21	Brown loamy sand.
30-60	A22	Yellowish red sand.
60-110	B21	Yellowish red slightly calcareous sandy light clay. 10-20% calcareous segregations, 2-6 mm in size.
110-120	B22K	Calcareous lamination.

Summary of Properties

Drainage: well drained, soil rarely remains wet for more than a few days

Fertility: inherent fertility is low as indicated by low CEC. Regular P required and occasional trace elements.

pH: alkaline throughout

Rooting depth: 110cm, roots maybe restricted in red and brown sand layers due to compaction and low nutrients

Barriers to root growth

Physical: no major limitations laminar calcrete provides barrier to some roots at depth, possible hard pans at 20-

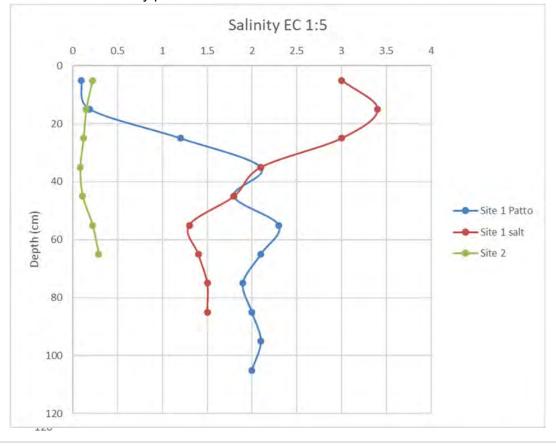
50cm

Chemical: No toxicities in the surface although subsoil Cl and EC increasing at depth.

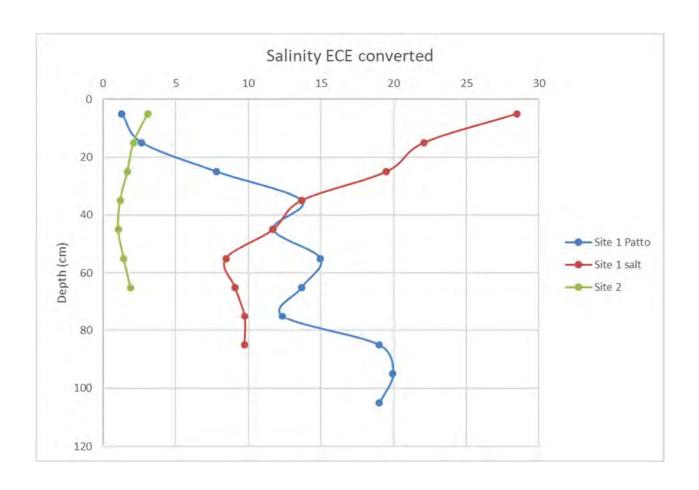
Water holding capacity: 127mm

Seedling emergence: satisfactory although can be water repellent

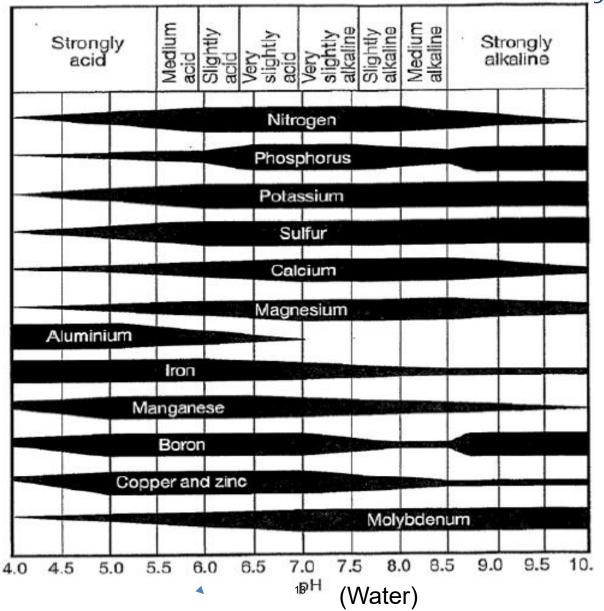
Workability: loose surface easy to work

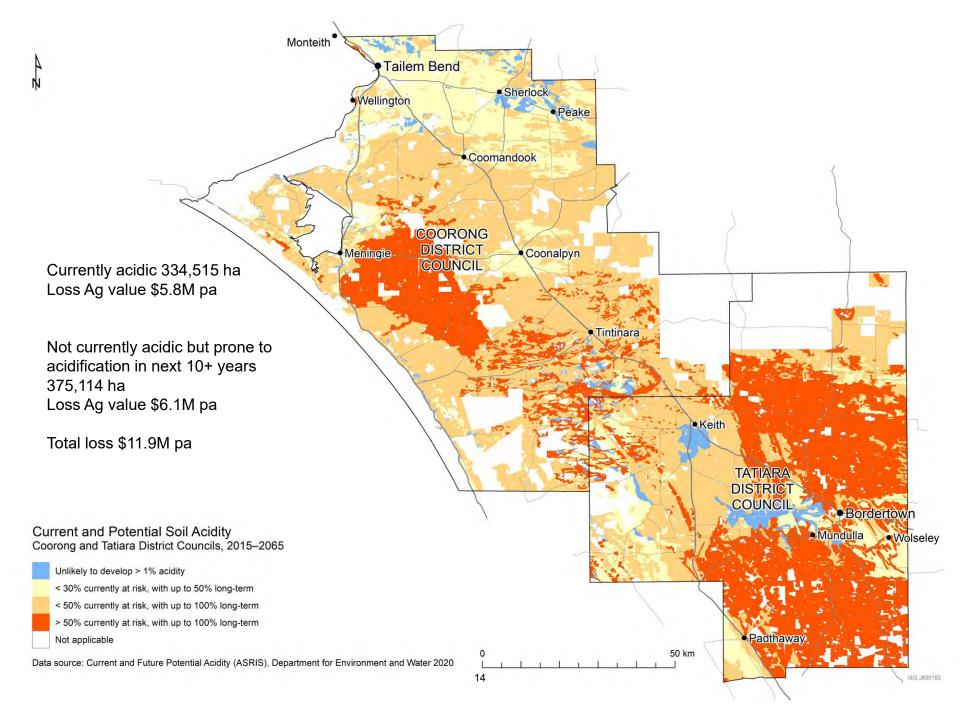

Erosion potential

Water: low


Wind: moderately low to moderate

Ê	63	-24	5	E				Col	lwell	/kg	/kg	Trace	Elements	mg/kg (DPTA)
Depth (cm)	ph H ₂ O	pH CaCl ₂	NO3 mg/kg	EC 1:5 dS/m	ECB	% 30	8	Avail. P mg/kg	Avail. K mg/kg	Boron mg/kg	SO4-S mg/kg	Cu	Zn	Fe	Mn
0-12	8.08	7.48	7.7	0.21	3	1,16	18	21	200	0.81	8.9	0.36	3.4	18	1.7
12-30	8.01	7 52	2.4	0.14	2	0.6	22	17	160	0.59	5.7	0.2	0.94	12	0.8
30-60	8.51	7.93	1.2	0.13	2	0.21	21	8	150	0.78	6.8	0.09	0.19	7.4	0.5
60-110	8.59	8.01	3.2	0.36	3	0.25	99	<5	320	2.6	19	0.13	0.11	21	<0.3
110-120	8.69	8.14	1.4	0.68	4	0.34	155	<5	340	3.2	38	0.27	0.15	15	0.4
Critical / Ideal values	6-8	5-7	-	<0.7	<4	S: 0.5-1.0 SL: 0.7-1.4 L: 0.9-1.8 CL/C: 1.2-2.0	20- 120	25-30	100	<15	>6-8	0.3	0.5		1
Depth (cm)	CI mg/k	Sun	ns	Excha	ngeable ca	ations cmol	(+)/kg	ESP	Dispe	ersion	Calc	nate			
Pe	0	cmol (+)/Kg	Ca	Mg	Na	K		2 hrs	20 hrs.	Equi	y %			
0-12	57	7.3	Ó	6.35	0.68	0.00	0.30	0	0	0	1				
12-30	24	6,8		5.84	0.66	0.00	0.28	0	0	0	0.	5			
30-60	42	5.0		4.09	0.65	0.00	0.26	0	2	2	0.	4			
60-110	250	16.8	3	12.3	3.26	0.40	0.85	2	2	2	4.	6			
110-120	600	20.4	1	14.6	4.07	0.64	1.04	3	0	0	34	1			
Critical / Ideal values	S; <120 L: <200 C: <300	15		75% of CEC	20% of CEC	<6% of CEC	5% of CEC	<6		4					


10cm increment salinity profiles EC 1:5



10cm increment salinity profiles ECe converted

Soil pH and nutrient availability

Estimated yield penalty

Crop Type	Pro	duction losses (t/h	a)
	Soil pH (CaCl ₂) 5.5-5.0	4.9-4.5	≤4.5
Wheat (tolerant)	0	0.2	0.4
Barley	0.2	0.6	1.0
Peas	0.2	0.4	1.0
Lupins	0	0.2	0.4
Beans	0.2	0.6	1.2
Lentils	0.2	0.6	1.2
Hay	0.2	0.4	0.8
Canola	0.2	0.6	1.0
Oats /Triticale	0	0.2	0.4

Estimated yield penalty

Pasture	Prod	Production losses (t/ha)							
	Soil pH (CaCl2) 5.5-5.0	4.9-4.5	≤4.5						
Acid sensitive (medics)	0.2	0.6	1.0 – 1.2						
Acid tolerant (sub-clovers)	0	0.2	0.4						

Estimated economic impact

	Cooron	g District	Tatiara	District	Total		
	Area impacted (ha)	Total production loss \$m pa	Area impacted (ha)	Total production loss \$m pa	Area impacted (ha)	Total production loss	
Area currently affected by acidity	117,825	\$1.9	216,690	\$3.9	334,515	\$5.8	
Area affected over next few decades	255,448	\$3.9	119,666	\$2.2	375,114	\$6.1	
Total	373,273	\$5.8	336,356	\$6.1	709,629	\$11.9	

Treatments and pay back periods

Treatment	Approximate cost (\$/ha)	Pay back period (years)	Est Time treatment may last (years)
Lime	125 - 180	1.1 – 1.4	10
Deep ripping	60 - 100	0.6 - 1.0	2-10
Spading	130	1.2	3-10
Delving	300 - 450	1.9 – 2.3	10+
Clay spreading	500 - 800	2.5 – 4.0	Up to 20+

Deep ripping, spading, delving and clay spreading are options provided that the underlying clay is alkaline.

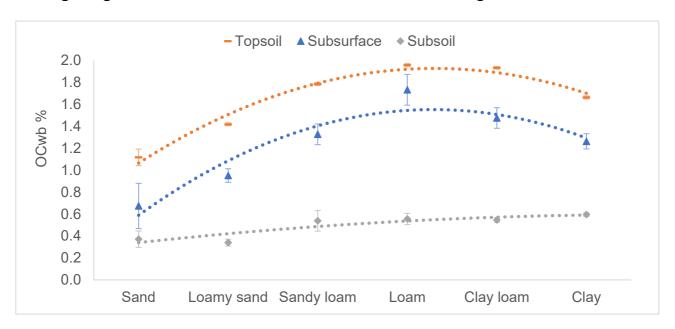
Based on a W, B, Beans, W, B, Pasture rotation

If more sensitive crops are grown in the rotation then the pay back will be shorter.

Clay rates 150 to 250 t/ha

Soil Carbon in SA Agricultural Soils

AMANDA SCHAPEL - PIRSA


Role of carbon in the soil

Physical	Chemical	Biological
better structural stability (aggregation) lower bulk density rapid infiltration of water better drainage better root growth less erosion improved water holding capacity	improved cation exchange source of nutrients continual release of nutrients sorption and deactivation of contaminants	increased biological activity increased diversity improved suppression of soil borne pathogens

Soil Carbon Tests

Carbon type	Method	Measures	Pros / Cons
Total C	High temperature combustion (Leco or Dumas)	Organic and inorganic C	In soils with carbonate can be difficult to measure change in organic C
Organic C	Wet oxidation (Walkley Black method)	Organic C	Incomplete test – measures only 55-80% of total OC
Inorganic C	Calcium carbonate equivalent	Inorganic C	Can be an inexact test.
Total Organic C	Wet oxidation (Heanes method)	Organic C	Complete test
Total Organic C	Pretreatment then High temperature combustion (Leco or Dumas)	Organic C	Need to ensure that have complete removal of inorganic C before combustion or results will be incorrect

Average Organic Carbon Concentration of South Australia Agricultural Zone

Soil Organic Carbon Benchmarks for the Upper South East Agricultural District

Extracted from 'Soil Carbon in South Australia: Volume 4 – Benchmarks and Data analysis for the Agricultural Zone 1990-2007'. Schapel A, Herrmann T, Sweeney S and Liddicoat C (2021).

Benchmark topsoil OC (%) values for texture and land use displaying the mean and percentile values for

the Upper South East compared to the mean for the Agricultural Zone.										
	Ag Zo	Ag District Benchmarks								
Texture	Ме	ean	Count	Mean	2	25%	409	% 50%	60%	75%
San	d 1.	.12	23	1.08	C	0.90	1.0	5 1.12	1.19	1.31
Loamy san	d 1.	.42	933	1.21	C	0.85	1.0	1 1.10	1.24	1.51
Sandy loar	m 1.	.79	636	1.43	C	0.96	1.2	0 1.35	1.50	1.80
Loar	m 1.	.96	437	1.66	1	1.20	1.4	0 1.50	1.70	1.97
Clay loar	m 1.	.93	308	1.81	1	1.40	1.5	9 1.74	1.87	2.13
Cla	y 1.	.66	288	1.63	1	1.00	1.2	6 1.40	1.60	1.92
Weighted Mean (all texture	e) 1.	.77	2625	1.45	1	1.02	1.2	2 1.33	1.49	1.77
	Benchma	ark O	C Cond	centration	1				Distri	ct Prop
Land use	Count		Mean	259	%		50%	75%		(%)
Orchard / Vineyard	235		0.98	0.5	8		0.87	1.30)	12
Cropping	1084		1.50	1.0	6		1.43	1.86	;	54
Irrigated Pasture	Irrigated Pasture 20		1.54	1.1	0		1.41	1.86		1
Pasture	620		1.55	1.0	0		1.36	1.91		31
Vegetable	37		1.67	1.1	0		1.51	2.24		2

CARBON ON YOUR FARM – SOIL HEALTH AND SALINITY UPDATE

COOMANDOOK 6/4/22 - PRE-EVALUATION

Name:	•	•									
Role:											
		<u> </u>				T					
Landho	lder		Adv	viser/Agro	onomist	Industry	/		Oth	er	
	1= L	.ow		5=Aver	age	10=	High				
SALINE S	OILS										
How wor	uld you rat	te voi	ur cu	ırrent kno	owledge a	around sa	line soils	in the	· Coc	mandoo	k region
_	· ·	-					1	1			_
1	2	3		4	5	6	7	8		9	10
	مماريا المار										*!:
	uld you rat ne Cooma	-			owieage a	arouna th	e process	ses tn	at co	ntribute	to saline
	1				T =		1 -	T 0			T 40
1	2	3		4	5	6	7	8		9	10
CARBON											
How wor	uld you rat	te you	ur cu	ırrent kno	owledge a	around ca	rbon emi	ssion	s and	d sequest	ration?
1	2	3		4	5	6	7	8		9	10
					•						
How wel	l do you u	nders	stan	d the fact	ors that o	contribute	e to your	farms	carl	oon footp	orint?
1	2	3		4	5	6	7	8		9	10
	_	<u> </u>		•			1 ′				1 10
								_			
How wor	uld you rat	te you	ur cu	ırrent kno	owledge a	around so	oil carbon	?			
1	2	3		4	5	6	7	8		9	10
How wel	l do you u	nders	stan	d soil carl	bon stock	s are and	how they	y are	calcu	ılated?	
1	2	3		4	5	6	7	8		9	10
						•					

POST-EVENT EVALUATION

How would you rate todays session (1- poor, 10-excellent)

1 2 3 4 5 6 7 8 9 10

Has todays event increased your knowledge in the following areas (Y or N);

- Saline Soils
- Saline systems
- Carbon on-farm
- Soil carbon
- Climate forecasting

As a result of todays events are you likely to follow up on any of the matters covered or make any business / on-ground changes on your farm?

Saline soils

No	Unlikely	Maybe	Likely	Definitely
				_

Saline systems

No	Unlikely	Maybe	Likely	Definitely
----	----------	-------	--------	------------

Carbon on-farm

No	Unlikely	Mavbe	Likely	Definitely
1				

Soil carbon

No Unlikely Maybe Likely Definitely

Climate

No	Unlikely	Maybe	Likely	Definitely