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Groundwater discharge was described by the soil evaporation function (rather than a specified
flux as in the broad-mesh model), and potential evaporation rates for each year were given in
Table 2. Due to the importance of discharge on the groundwater budget, and the degree of
uncertainty in field determined extinction depth. this parameter was varied over the range of 0.5
to 2.0 metres.

A value of 0.05 was used for the specific yield throughout the model, as selected in the broad-
mesh model.

A constant head was specified at the downgradient boundary, whilst a general head condition
was specified at the upgradient boundary. In order to replicate conditions in 1987, the initial
hydraulic head at the upgradient boundary was reduced by 0.3 m to 5.7 m AHD. The upgradient
boundary head was increased at the rate of 0.05 m yr', as observed (ie. from 5.7 to 5.95 over
the calibration period). The downgradient boundary head was reduced to 2.2 m AHD (for
reasons discussed later).

The calibration involved comparing the computed and measured heads based on the crite ™
outlined in Section 4.3. The parameters were selected to satisfy (to an appropriate degree) all v
the criteria.

A mean recharge rate of 25 mm yr"' was considered most appropriate, although 12.5 and 17 mm
vr' were also tested. The value chosen was slightly higher, (but is considered more reliable) than
that found from the broad-mesh model. but remained well within the range of measured values.
Plotting the computed versus measured head increase between summer and winter 1992 gives an
indication of the reliability of recharge rates (Fig. 18). Whilst computed heads are slightly less
than measured heads, the trend throughout different areas of the model is evident. The option to
increase recharge rates was disregarded on the basis of previous simulations (and measured
data). A decrease in specific yield was tested, and although it improved this aspect of the model,
the net effect was to increase the RMS error.

Extinction depth was varied from 0.5 to 2 metres. The effect of varying extinction depth results
in a significant impact on the groundwater response in the vicinity of the older discharge areas,
which is propagated throughout most of the model area. This was also made clear by alte 2
discharge rates in the broad-mesh model. An extinction depth of 0.5 metres was found to oe
most appropriate. Figure 18 also shows the computed versus the measured head decline between
winter and summer 1992. A reasonable agreement between measured and computed heads is

evident. which would suggest that the model is handling discharge reasonably well.

Greater temporal response in piezometric levels is evident in the vicinity of discharge areas (eg.
RBY10) where the superimposed effect of recharge as well as discharge is evident in the

hydrographs (Fig. 17). The model simulations also showed similar responses in the discharge
areas.

With a satisfactory handling of recharge and discharge processes, the focus was then given to
aquifer transmissivity, in order to adjust the mean levels computed to fit more closely the mean
levels observed. It was considered appropriate that no more than about four zones of hydraulic
conductivity be established due to the lack of hydraulic data in the study area. Areas which were
targeted for investigation were the areas adjucent to the south-eastern and western boundaries of
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Fig.18: Comparison between computed and
measured head differences for 2 seasons
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the model. The south-east corresponds to the area where the piezometric contours have been
displaced approximately three kilometres to the west (Fig. 1). We suspect that this area has a
low aquifer transmissivity (recharge estimation in this area suggests that enhanced recharge is
not a probable cause of this anomaly). In the west the model underestimated the hydraulic
gradient, which usually resulted in overestimating heads in the vicinity of site 2. The hydraulic
head at the boundary was decreased to the lowest permissible value (2.2 m AHD).

Several configurations and values of hydraulic conductivity were tested, and ranges of 5 to 60 m
day”' were used. Modifying the distribution of hydraulic conductivity improved the fit with
measured data of the groundwater flow pattern (particularly in the south-east), however the
problem in the west proved difficult to constrain over the range tesied. The eventual outcome
resulted in heads at site 2 being overestimated by around 30 em.

Figure 19 shows the measured and computed heads along perpendicular transects across study
sites 1 and 2 for three time intervals corresponding to the ends of winter (September, 1991),
summer (March, 1992) and following winter (December, 1992) with the eventual
parameterisation chosen for the fine-mesh model. The degree of fit between measured ar~
computed heads is apparent from this figure, as is the problem with consistent differences 1
mean values at site 2 (although the trends appear to be good). Figure 20 shows a comparison
between computed and measured heads for all available piezometers at time steps corresponding
to those shown for the local transects (Fig. 19) near the end of the calibration period. The mean
RMS error for the three time steps was 0.25 m for the model, whilst at site 1 it was considerably
lower at 0.07 m, and higher at site 2 (0.35 m).

A summary of the parameters and boundary conditions chosen for the fine-mesh model is shown
in Figure 21. These values were used in the subsequent predictive phase of the modelling.
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Fig. 20: Comparison between computed
and measured heads for fine-mesh model
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7. SIMULATIONS OF LAND MANAGEMENT OPTIONS

The predictive phase of the modelling involved a total of nine different scenario's which were
selected to simulate a range of land management options. A time frame of 20 years (in addition
to the initial 6 year calibration period) was considered a suitable time in which to determine the
effectiveness of these options. The rainfall records for a 20 year period for 1967-1986 (see Fig.
5) were used to derive recharge rates. The scenario’s included:

1. Do nothing: recharge rates remain at current levels

2. Do nothing: as for (1) however the sequence of recharge rates were in ascending order

3. Do nothing: as for (1) however the sequence of recharge rates were in descending order
4-6. Recharge reductions of 10, 50 and 90% of (1) throughout the entire area

7. Recharge reduction of 50% for an area of 78 ha for site 1

8. Discharge enhancement through pumping (20 m* day') within the swale at site |

9. Constant upgradient boundary condition (and 50% recharge reduction)

In the discussion that follows we refer primarily to the entire model area, however a subarea
the model at site 1 is often used to demonstrate particular aspects of the model.

Hydraulic response across the model

Calibration and sensitivity analysis has indicated that the hydraulic response of the model is
spatially non-uniform, and is governed by processes within the model (ie. recharge-discharge
areas) and also relationships at the model boundaries. Prior to giving a detailed description of
the simulations, it is worthwhile to show the spatial response of the calibrated model. Figure 22
shows an East-West transect across the centre of the model at three times during a simulation
(scenario 6; discussed later). The impact of the boundary conditions is clearly evident, as is the
relationship between the land surface and the watertable, especially the old discharge areas and
swales. which can be identified as depressions in the landscape.

The model predictions were undertaken with the assumption that all boundary conditions except
for the upgradient remain unchanged in time. This may not necessarily be the case for the
northern and southern (no-flow) boundaries if there is sufficient change in watertables within
mode! to induce lateral inflow or outflow. Later results indicate that the effect of varying the
eastern boundary condition between constant and rising head (scenario's 5 and 9) is not
sufficiently large. Hence maintaining no-flow boundaries is not sufficiently large to suggest that
they could be invalid.

Rainfall patterns (Scenario’s 1,2,3)

The predictive phase of groundwater simulations presumes that rainfall patterns (and hence
recharge) will behave in a particular fashion. The enigma is that one cannot forecast future
rainfall with any degree of certainty, with established methods relying on historic records. The
impact of the distribution of rainfall in time has been evaluated by distributing the rainfall in the
natural, ascending and descending order using data from 1967 to 1986. In this way the upper
and lower bounds of the influence of the rainfall sequence can be evaluated.
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Changing the sequence of rainfall alters piezometric heads at the end of the simulation, as well
as the way in which heads are distributed in the time series. For example, these differences may
be as much as 40 cm at site | (Fig. 23). Eventual levels for the ascending and descending
sequences overestimate and underestimate by 10 and 30 cm respectively the level determined
from the natural rainfall record.

These simulations show that piezometric heads are strongly influenced by rainfall, and that
rainfall patterns in the future could influence the effectiveness of land management treatments
which are implemented. For example, several dry years in succession can have a similar effect
as a recharge reduction of 50% (discussed later) for the natural sequence of rainfall years.

Given that future uncertainties which exist in other aspects of the modelling (eg. upgradient
boundary heads), it was considered unjustified to go through a rigorous stochastic modelling
exercise based on rainfall sequences. Therefore the natural sequence (1967-1986) was chosen for
all of the model simulations (except scenario’s 2,3). This has the benefit of maintaining the
natural correlation in rainfall from year to year.

Salinisation is defined here as occurring where the position of the watertable is within 0.6 men.
of the ground surface at the end of September. This definition was chosen as it coincides with
the maximum depth (at September) where there was a reduction in the yield of barley at Cooke
Plains (Pavelic er al., 1994).

Continue current practices (Scenario 1)

The model simulations suggest that maintaining current land management practices could result
in a net water level rise in the order of 20 cm over 20 years within the low-lying and upland
areas alike (Fig. 23). A further 50 ha of productive land would become salinised over the next
20 years, including a comparable proportion of land at site 1 (Fig. 24). The areas salinised after
20 years would be 390 ha for the model area and 3.3 ha for site 1. As already discussed, the
predicted rise is dependent on rainfall patterns, (which influence recharge rates) and also on the
extent of regional influences (which depend on upgradient landuses). The rate of growth of the

area of salinised land will decline with time as the groundwater system approaches a new
equilibrium.

Recharge reduction (Scenario's 1.4-6)

The impact of reductions in recharge of 10, 50 and 90% throughout the area is shown in Figure
25, for a location within a swale at site 1. A reduction in recharge of 10% has little impact on
groundwater levels, whilst 50% reduces piezometric heads by 30 to 40 cm by the end of the
simulation. Recharge reduction of 90% over the entire area produces declines of between 60 and
100 cm in some areas of the model. Larger watertable declines are associated with areas
downgradient of the discharge areas (see Fig. 22).

Seasonal fluctuations become damped as recharge rates decline and are almost undetectable at a

90% reduction. Time spans in the order of 5 to 10 years are required for watertables to stabilise
when a quasi-steady state is established,
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From Figure 24 the area salinised will increase from its current 340 ha to 390 ha if recharge is
not reduced, and will decline to 380, 330, and 210 ha for recharge rate declines of 10, 50 and

90% respectively. For site 1 the change in salinised area is proportional to that for the model
area.

Local recharge reduction at farm-scale (Scenario 7)

The impact of small scale agronomic treatments are shown in Figure 26, where an area of 78 ha
(effectively the area shown in Fig. 15) has a 50% recharge reduction, whilst recharge rates were
unchanged in the remaining areas. There is no significant influence on groundwater levels in the
vicinity of site 1 due to the predominating influence of higher rates of recharge in surrounding
areas. There was virtually no difference in the areas salinised between scenario’s 1 and 7. This
result has important implications for management. In particular, individual farmers are unlikely
to have the impact which could be produced by working cooperatively.

Discharge enhancement (Scenario 8)

The use of windmills to extract groundwater via pumping assumes that all waters are dispos. .
of off-site (say into discharge lakes). and that none of this water is returned to the aquifer. The
specified discharge rate of 20 m' day" was chosen, which is typical for windmills, and identical
to that selected by Salama er al., (1993a).

As in the case of local recharge reduction groundwater pumping at such low discharge rates
within the swale at site 1 has negligible impact on heads (Fig. 27). This is attributed to the
relatively high transmissivity and specific yield of the aquifer which restricts piezometric
declines. This supports our hypothesis on the effectiveness of discharge enhancement based on
the measured hydraulic properties of the aquifer. Drawdowns after 20 years were in the order of
5 cm at a radial distance of 40 metres, and undetectable at 200 metres.

Regional recharge reduction upgradient of the study area (Scenario 9)

The impact of local as opposed to regional (upgradient) effects within the study area were
evaluated by varying the upgradient boundary condition. Modelling has been undertaken on ' =
assumption that the upgradient boundary condition was increasing at the rate of 0.05 m yr', us
observed, although a constant boundary condition (fixed at the current level) was also tested.
This allowed a comparison between regional and local groundwater impacts within the study

area. Scenario 9 is akin to areas upgradient of the study area also participating in some degree of
recharge reduction.

The simulation suggests that lateral groundwater inflow from upgradient areas is to some degree
detrimental to the efforts of landholders within the model area, particularly in areas situated
closest to the upgradient boundary. Figure 28 shows a comparison between fixed and rising
boundary conditions at two sites within the study area. One is situated near the eastern
(upgradient) boundary whilst the other is situated near the western boundary (site 1). Declining
heads are attributable to the 50% recharge reduction specified in both simulations. Near the
eastern boundary the declining watertables due to recharge reduction are hampered by the effect
of the monotonically rising heads. The increasing difference between the rising and constant
boundary condition may result in differences up to 100 cm after 20 years in the east, whilst to
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Figure 28: The impact of upgradient
boundary condition on waterlevels
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the west there is no effect, due partially to the fixed boundary condition in the west, and due
partially to the short circuiting effect on groundwater flow to the lakes.

Based on Figure 28 it appears that recharge reduction measures will be effective west of the
lakes even if land holders upgradient of the study area do not participate in reducing recharge.
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8. CONCLUSIONS

Groundwater flow modelling was undertaken for an area of 105 km" situated within a regional
groundwater flow system near Cooke Plains in SA. Our initial approach was to develop a broad-
mesh model to test our conceptual model. and also for sensitivity analysis of model parameters
and boundary conditions.

A subsequent fine-mesh model (for the same area) was shown to be capable of adequately
simulating local and large scale processes. Steady state and transient simulations involving
modifications in recharge, discharge, hydraulic conductivity, specific vield and boundary
conditions were varied over ranges identified from field studies until a satisfactory agreement
between computed and measured hydraulic heads was obtained. The calibrated model was used
to predict hydraulic heads for the next 20 years for various land management options.

The predictive phase of the modelling has shown that:

Continuing current land management practices (crop/pasture rotation) will result in groundwater
level rises of the order of 20 cm. and increased land salinisation of 50 ha over the study area in
the next 20 years (based on historical rainfall patterns). This represents 13% of the area currently
salinised or 0.5% of the model area.

Recharge reduction (such as by establishing lucerne) has the potential to reduce groundwater
levels and allow the re-establishment of crops on 180 ha of saline land. However this would
require the reduction in recharge of up to 90% which would need more than 90% of the land to
be re-established in lucerne. Watertable responses would occur rapidly, and heads would stabilise
within 5 to 10 vears of recharge reduction.

Recharge reductions of 10% will have negligible impacts on salinity but 50% reductions would
reclaim 50 ha of salt affected land over 20 vears.

Small scale land management will have virtually no impact on groundwater levels due to the
overriding influence of surrounding higher recharge areas. The simulations show that expanding
the area of farmland where recharge reduction is undertaken. will result in larger declines in
groundwater levels.

Discharge enhancement through the use of windmills has little impact on groundwater levels
due to the high transmissivity and specific yield of the aquifer.

The impacts of land treatment in the study area are diminished to some degree especially east of
the old discharge areas the effects of continuing high recharge rates in upgradient areas.
However, the modelling shows that under current hydrological conditions, local processes

dominate, and therefore efforts to reverse salinisation through recharge reduction by landholders
in the study area are viable.
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Appendix 2: Conceptual Model and Groundwater Budget

The groundwater budget described is based on the studies of Barnett, (1992) and Walker et al.,
(1992b). Field measurements in conjunction with simple analytical models have been used to
estimate fluxes. The conceptual model was based on the groundwater budget presented here in
conjunction with piezometric data and hydrogeological information. It forms the framework for
the development of the groundwater model(s). The model domain, its discretisation in space and
time. as well as the range of input parameter values used to provide a model calibration rely on
the conceptual understanding of the groundwater system.

GROUNDWATER BUDGET

For a defined region over a given period of time, the inflow minus the outflow is the change in
storage. The groundwater budget (which describes this balance) may be expressed as:

= (A1)
Ry~I=ET,+0_tAS,

1

where R, = local groundwater recharge
[, = lateral groundwater inflow
ET, = groundwater evapotranspiration
O, = lateral groundwater outflow

AS, = change in groundwater storage

An estimate is made of each component of equation (A1), in addition to the total groundwater
storage and groundwater velocity.

TOTAL GROUNDWATER STORAGE

The total volume of groundwater in storage, V is given by:

V=2Ade (A2)

where A = surface area of study site (10° m)
d = saturated thickness of aquifer (20 m)
€ = aquifer porosity (0.3)

Therefore it follows that V = 600.000 ML
this is equivalent to 6000 mm of water over the study area



ANNUAL INCREASE IN STORAGE

The average long term increase in groundwater levels provides the best approach for estimating
the additional increase in groundwater storage as a result of increased recharge rates.

Assuming a rise of 0.10 m yr' and a specific vield of 0.05 gives a net increase of 5 mm yr’
(500 ML over the study area).

LATERAL GROUNDWATER FLOW

Flow net analysis is based on piezometric levels for March, 1992 (however similar gradients are
evident for other times of the year). Flow rate calculations (per unit width) are based on the
Dupuit equation:

_ k(hl-h) (23)
21

where g = groundwater flow rate (per unit width)
k = hydraulic conductivity of aquifer
h, = hydraulic head (upslope). measured from base of aquifer
h, = hydraulic head (downslope) measured from base of aquifer
| = distance between h; and h,

To determine the total groundwater flow, Q into a given area, we multiply q by the length over
which flow occurs.

Therefore

NEILIEHY ™

21

INFLOW

Using the following values to determine groundwater inflow from the eastern boundary of the
study area:

k=20 m day': d=20 m: h,=21 m: h,=20 m; 1=1430 m; L=9,500 m

from equation A4 we obtain:



Q = 990 ML yr'
this is equivalent to 10 mm yr' for the study area

OUTFLOW

Using the following values to determine groundwater outflow through the western boundary of
the study area:

k=20 m day"'; d=20 m: h,=17.5 m: h.=17 m: 1=1670 m; L=9.500 m
once again from equation 4 we obtain:

Q = 360 ML yr"
this is equivalent to 4 mm yr'' for the study area

GROUNDWATER VELOCITY

The "Darcy” groundwater velocity is given as:

== 22 (AS)

where

v = groundwater velocity
k = dh/dx = hydraulic gradient across study area
e = porosity of aquifer

Using values of hydraulic conductivity of 20 m day’', gradient of 5x10™ and porosity of 0.3
gives a velocity of 12 m yr''. This indicates the travel time for groundwater across the study area
(11 km) is approximately 900 vears.

DISCHARGE RATES

Field measurements (based on a time series solute profiles in the unsaturated zone) in the
salinised swales suggest a mean annual discharge of approximately 100 mm yr'" Flow net
analysis of an older discharge area suggests a flux in the order of 500 mm yr'.



RECHARGE RATES

The mean annual post cleared recharge rate is estimated to be approximately 20 mm yr' from
field measurements. Hydrograph analysis indicates that recharge may range between around 10
to 40 mm yr' between wet and dry years.

GROUNDWATER BUDGET

Substituting the components of the groundwater budget already calculated (in ML) into equation
Al gives another method for calculating recharge:

R, + 990 = 1410 + 360 + 500
R, = 1280 ML

This is equivalent to 13 mm over the study area, and is within the range of 10 to 40 mm
determined independently.
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