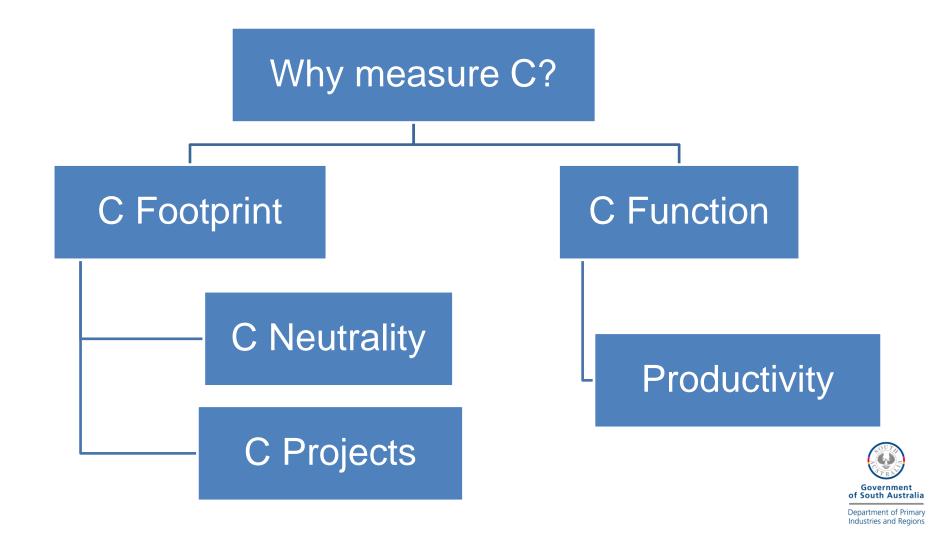


Outline

Carbon in your farm business

Carbon footprint, emission reduction and sequestration


Soil carbon in our landscape. Can we build it?

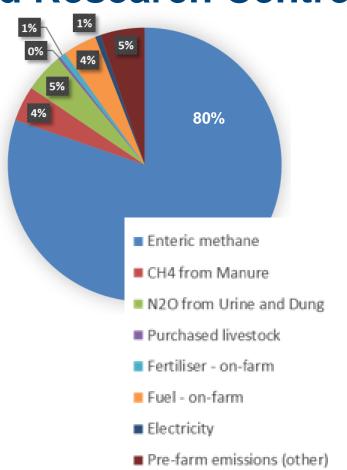
- What is soil organic carbon and why is it important?
- Soil carbon tests what you need to know
- What we know about soil C in South Australian agricultural soils
- Lessons learnt

Carbon in your farm business

Carbon Neutrality

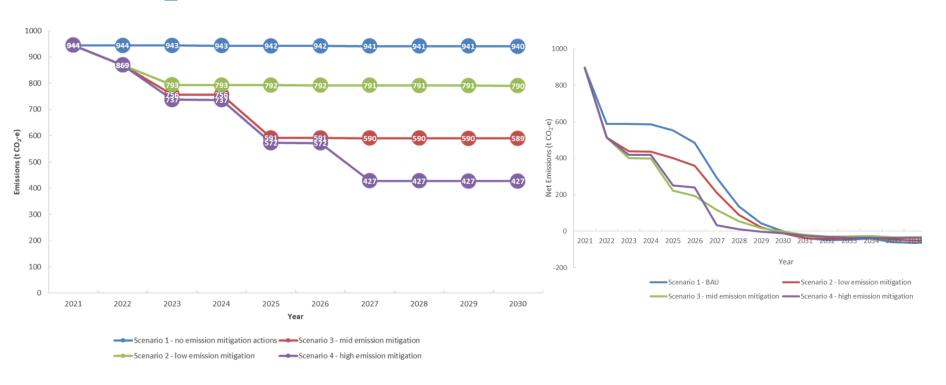
Carbon Neutral

- businesses and organisations are choosing to reduce their climate impact to zero by becoming carbon neutral
- gain certification (e.g. Climate Active, Industry targets)


To do this:

- 1. calculate the greenhouse gas emissions C Footprint
- reduce these emissions as much as possible by investing in new technology or changing the way they operate
- 3. offset any remaining emissions by purchasing carbon offset units

Carbon Footprint – Turretfield Research Centre


Gross Emissions	(t CO ₂ -e)	% of emissions
Scope 1	885	94%
Scope 2	6	0.5%
Scope 3	53	5.5%
Total Emissions	944	100%
Methane – CH ₄	799	84%
Nitrous oxide – N ₂ O	54	6%
Carbon dioxide – CO ₂	91	10%

COOPE 4	Direct OHO conicsions for an account of an account of
SCOPE 1	Direct GHG emissions from sources owned or controlled
	by the company (e.g. diesel use in tractors, livestock
	emissions)
SCOPE 2	GHG emissions from generation of electricity consumed
	on the location by the company
SCOPE 3	GHG emissions from sources not owned or controlled by the company (eg extraction and production of fertilisers)

Extracted from Integrity Ag & Environment Report for PIRSA, 2021

CO₂-e Reduction Strategies – Turretfield

Mitigation – emission reduction

Sequestration – storing C

Extracted from Integrity Ag & Environment Report for PIRSA, 2021

Carbon Projects - ERF

Emissions Reduction Fund (ERF) projects

- Earn Australian Carbon Credit Units (ACCUs) by participating in specific activities under emission reduction or sequestration projects
- ACCUs can be sold to generate income either to the government or in a secondary market
- You can not sell ACCUs and use to become C Neutral

To do this:

- 1. Do your homework
- 2. Enter into an ERF project

14 soil C, 1 Biogas ACCUs for Brinkley Biogas Flaring Project

Soil Carbon ERF Projects

Project needs to be registered before soil

Definitions

Crediting period - 25 years

baselining or activity is applied

Permanence obligation period - 100 years

Baseline period – 10 years prior to project start

Soil Carbon project

A project is eligible if the land has soil carbon sequestration potential and has met the land management requirement over the 10 year baseline period

A project requires at least one eligible management activity to be carried out or maintained on all land included in a carbon estimation area (CEA), until the end of the permanence obligation period

Additionality

The eligible management activity is new or materially different from the equivalent management activity carried out in the baseline period

Soil Carbon Projects - ERF

How much is change worth?

Spot price Sep 21 AUD **\$18** for 1 tCO₂e/ha

If soil OC \uparrow over 5 years by $0.5\% = 7.70 \text{ tCO}_2\text{e/ha}$

<u>Discounts</u> (minus from original value)

5% for uncertainty = $7.32 \text{ tCO}_2\text{e/ha}$ \$132

25% for 25 year contract = 5.49 tCO₂e/ha \$99

GHG emissions for 5 year sampling period – not calculated

20% C broker fee = 4.39 tCO₂e/ha \$79

Assumptions

OC = 0.5 %

Bulk density = $1.4g/cm^3$

Soil depth = 30 cm

= 2.1 tC/ha

 $= 7.7 \text{ tCO}_2\text{e/ha}$

Bulk density and gravel remains the same tC to tCO₂e x 3.67

C broker fee between 15-25%

Start \$139/ha

After discounts \$79/ha

Soil C in our landscape

Why is soil C important?

Soil health / function

Plant productivity

Resilience

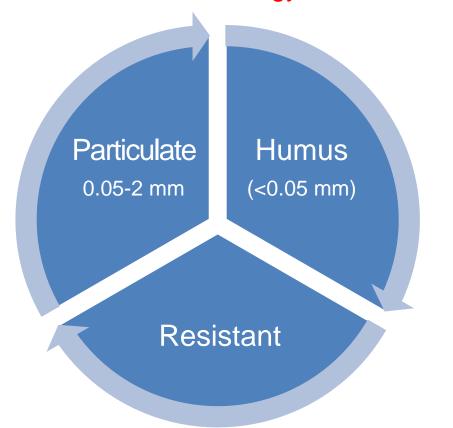
Offsetting greenhouse gases

Soil structure Water Cation holding exchange capacity capacity Why is OC important? Food for Provision biology, diversity nutrients of sp.

OC is a part of organic matter (OM)

What is soil C?

Inorganic (IC) and organic (OC) forms


IC (carbonate) is mineral based and not influenced by land management practices (except liming)

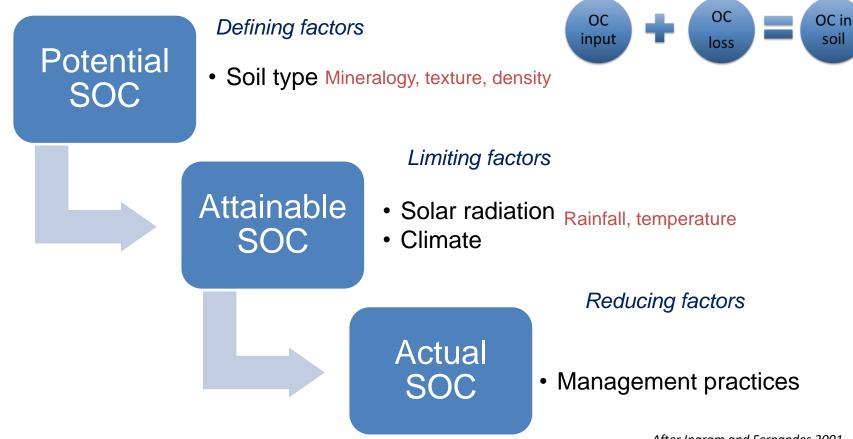
- OC is living or decomposing organic compounds of plants, animal and microbial origin
 - makes up ~ 40-60% of the mass of soil OM
 - influenced by land management practices

OC is made up of different fractions / pools

Soil biology is critical for OC turnover and nutrient release

OC turnover

POC = years


HOC = decades

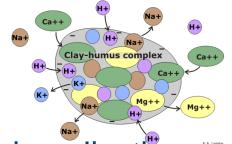
ROC = centuries

Turnover is dynamic

Human impact can turn soil into net CO₂ source or sink

What factors influence soil OC?

How does OC get into the soil?

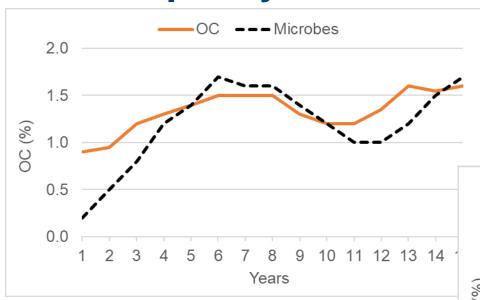

- Plant residue (above and below ground)
- Root exudates plants convert CO₂ via photosynthesis into sugars that are exuded through the roots to support biology (liquid carbon pathway)

- Manure and urine from livestock
- Soil biology can make up 1-5% of OC
- Fire pyrogenic carbon

Soils capacity to stabilise OC

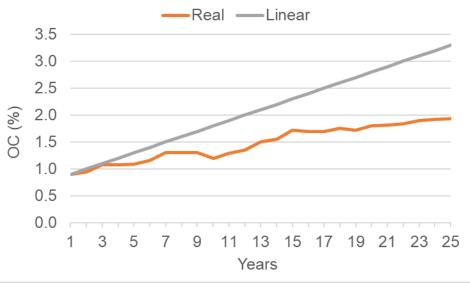
Soil has a finite capacity to protect OC from mineralisation = capacity to bond OC

Free Bound Occluded


Decomposition risk = high Decomposition risk = low Occluded

Decomposition risk = low Occluded

Decomposition risk = low



Soils capacity to stabilise OC

OC can be decomposed if not stabilised in soil

OC increase is not linear

Soil Carbon tests What you need to know

Soil C tests

Test	Method	Measures	Benefits/Limitations
Organic C	Wet oxidation (Walkley Black method)	ОС	Incomplete reaction – measures 75-90% of Total OC. Doesn't measure CO ₃ which can be a benefit.
Total Organic C	Wet oxidation (Heanes method)	OC	Total OC test by wet oxidation due to an external heating step. Does not measure ${\rm CO_3}$.
Total C	High temperature combustion (Dumas)	OC & IC	Measures Total OC in acid or neutral soils. In soils with ${\rm CO_3}$ and charcoal can be difficult to measure change in OC
Total Organic C	Acid pre-treatment then high temperature combustion	OC	Preferred method for soils with CO ₃ present. Need to ensure that have complete removal of CO ₃ before combustion or results will be incorrect.
Inorganic C	Calcium CO ₃ Equivalent	IC	Measures the ${\rm CO_3}$ by reaction to dilute HCl acid. Can be an inexact test.
Mid Infrared	Spectroscopy	OC and fractions	Quick and relatively cheap, not as accurate as other methods until calibrated. Sensitive to CO ₃ and requires acid pretreatment. Not commercially available in high pH soil.

Soil C tests

- If C accounting is being considered Total OC needs to be measured
- OC_{wb} represents 75-90% of the Total OC result
- where soil pH_{water} is < 7.5, with no fizz: Total C = Total OC method
- where soil pH_{water} is 7.5-8.5, with low to medium fizz: Total OC by calcium carbonate adjustment or acid pre-treatment is required for soils
- where soil pH_{water} is > 8.5, with high to very high fizz: carbonate needs to be fully removed by acid pre-treatment. OC_{wb} test can provide a guide.
- Analytical machines can't detect TOC values below 0.2% with confidence. This is problematic in sandy soils where values below this are common deeper than 10 cm. OC_{wb} test can provide a guide.

What we know about soil C South Australian agricultural soils

Soil Carbon Benchmarks for the agricultural zone 1990-2007

Soil and Land Hub – Collaboration between Sustainable Soils groups in DEW and PIRSA

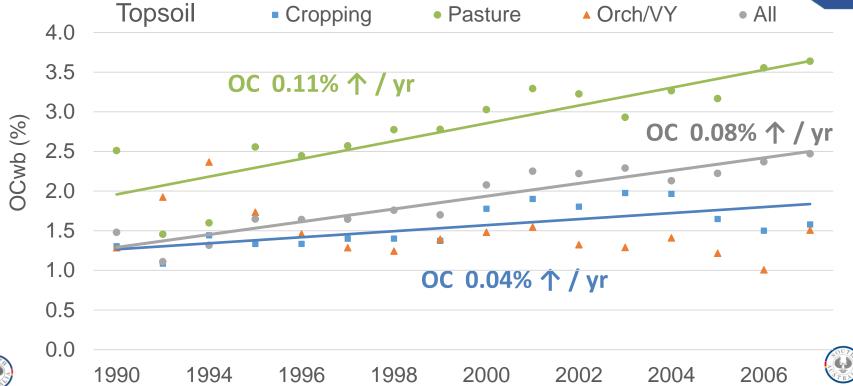
Land Resources Home (environment.sa.gov.au) under All Reports for Soil C in SA Volume 4

Soil Carbon in South Australia

Volume 4: Benchmarks and Data Analysis for the Agricultural Zone 1990 - 2007

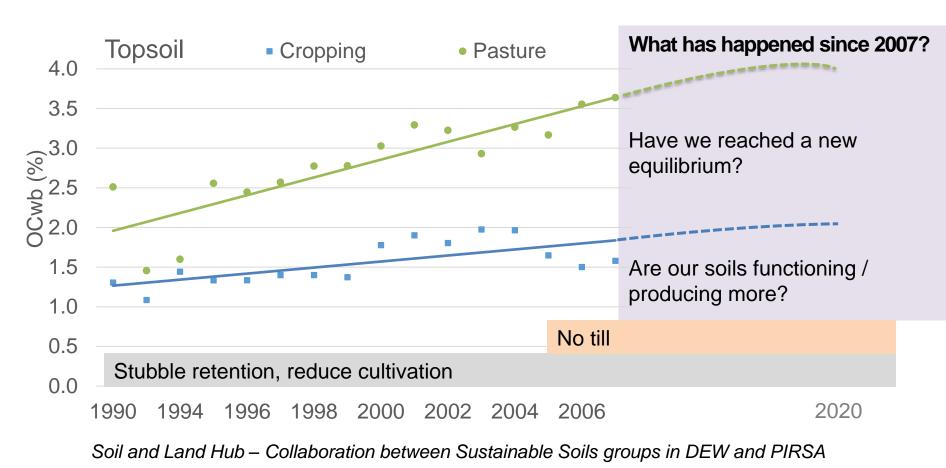
Amanda Schapel (PIRSA), Tim Herrmann, Susan Sweeney and Craig Liddicoat Department for Environment and Water May, 2021

DEW Technical report 2021/03


A collaboration between the Sustainable Soils Groups in DEW and PIRSA

Soil Carbon 1990-2007

36,000 soil tests



Soil and Land Hub - Collaboration between Sustainable Soils groups in DEW and PIRSA

Government of South Australia

Department of Primary Industries and Regions

Soil Carbon 1990-2007

Topsoil	Topsoil OC benchmarks by texture for key land uses										
		Pasture			Cropping		Orc	hard / Viney	ard		
	Low	Moderate	High	Low	Moderate	High	Low	Moderate	High		
Sand	<0.9	0.9 - 1.6	>1.6	<0.6	0.6 – 1.1	>1.1	<0.6	0.6 - 1.5	>1.5		

0.6 - 1.3

0.9 - 1.3

1.0 - 1.7

1.2 - 1.7

1.0 - 1.7

>1.3

>1.3

>1.7

>1.8

>1.7

>1.7

< 0.5

< 0.6

< 0.7

<0.8

<0.8

< 0.7

0.5 - 1.1

0.6 - 1.5

0.7 - 1.8

0.8 - 2.0

0.8 - 2.0

0.7 - 1.8

>1.1

>1.5

>1.8

>2.0

>2.0

>1.8

	Pasture			Cropping		Orc	hard / Viney	ard
Low	Moderate	High	Low	Moderate	High	Low	Moderate	High

1.2 - 2.8 > 2.8 < 0.6

1.9 – 3.8 **>3.8** <0.9

2.2 - 4.1 > 4.1 < 1.0

1.1 – 4.2 >4.2 <1.2

1.7 – 3.8 > 3.8 < 1.0

2.0 – 4.2 >4.2 <1.2 1.2 – 1.8

Loamy sand

Sandy loam

Clay loam

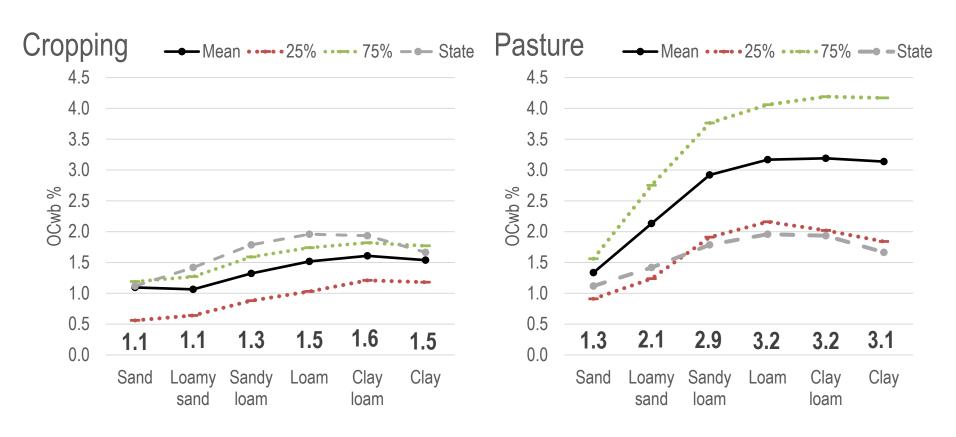
All textures

Loam

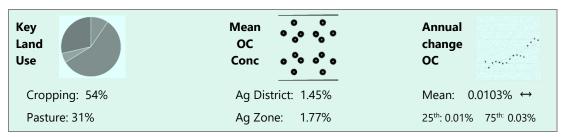
Clay

<1.2

<1.9

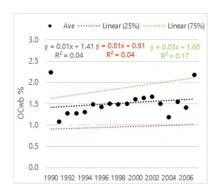

<2.2

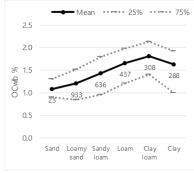
< 2.0

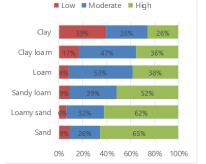

<1.8

<1.7

Soil texture x land use

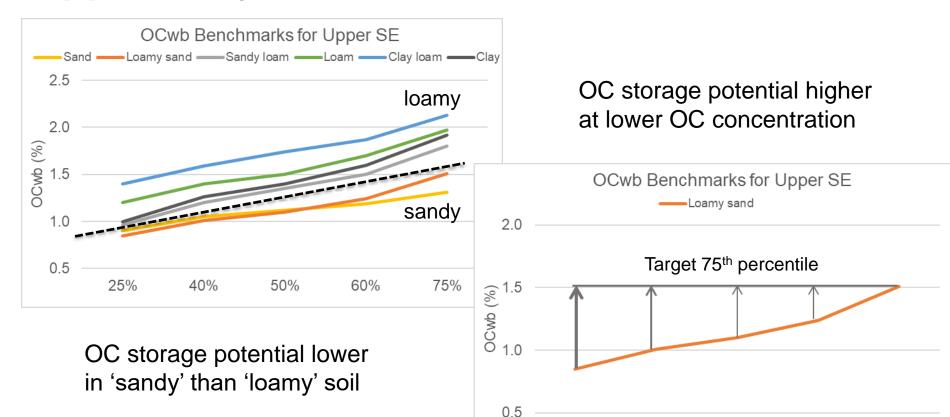



Upper South East OC 1990-2007



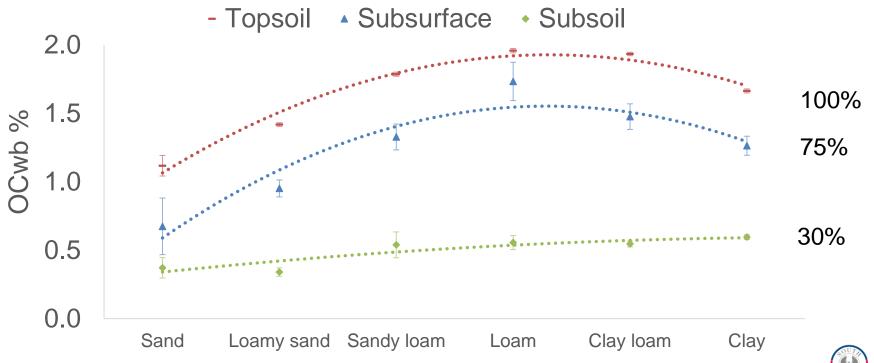
	Ag Zone	Ag District Benchmarks						
Texture	Mean	Count	Mean	25%	40%	50%	60%	75%
Sand	1.12	23	1.08	0.90	1.05	1.12	1.19	1.31
Loamy sand	1.42	933	1.21	0.85	1.01	1.10	1.24	1.51
Sandy loam	1.79	636	1.43	0.96	1.20	1.35	1.50	1.80
Loam	1.96	437	1.66	1.20	1.40	1.50	1.70	1.97
Clay loam	1.93	308	1.81	1.40	1.59	1.74	1.87	2.13
Clay	1.66	288	1.63	1.00	1.26	1.40	1.60	1.92
Weighted Mean (all texture)	1.77	2625	1.45	1.02	1.22	1.33	1.49	1.77

	Benchma	Benchmark OC Concentration							
Land use	Count	Mean	25%	50%	75%	(%)			
Orchard / Vineyard	235	0.98	0.58	0.87	1.30	12			
Cropping	1084	1.50	1.06	1.43	1.86	54			
Irrigated Pasture	20	1.54	1.10	1.41	1.86	1			
Pasture	620	1.55	1.00	1.36	1.91	31			
Vegetable	37	1.67	1.10	1.51	2.24	2			



Opportunity to store soil OC

25%

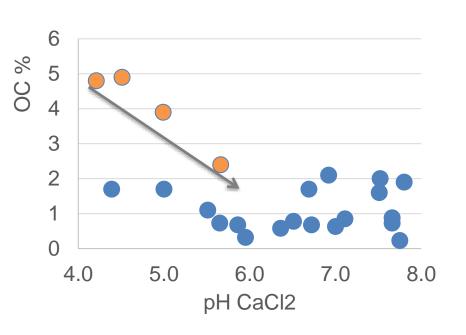

40%

50%

60%

75%

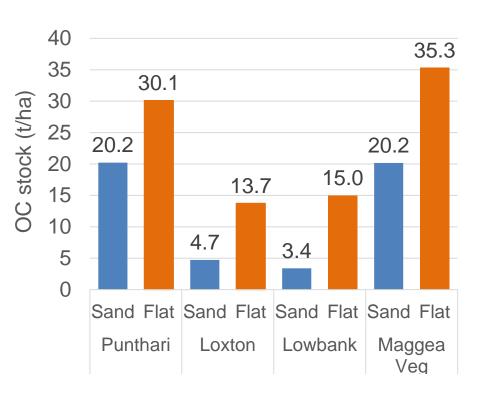
OC concentration down the soil profile



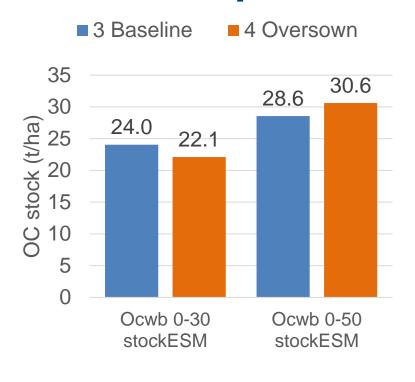
Lessons learnt from SA soils

Adverse conditions can increase OC

But = a non functioning soil affect on biological activity


Saline black clay over calcrete

Depth (cm)	О²Н На	ZI CaCl2	NO3 mg/kg	EC 1:5 dS/m	ECe	% 30
0-10	9.2	8.5	5.4	0.82	7	3.99
10-20	9.6	8.7	1.5	0.84	7	1.05
20-28	9.6	8.7	1.3	0.85	13	0.52
28-55	9.7	9.0	<1	0.78	12	0.06


Sand over clay with increasing lime

Depth (cm)	OzH Hq	pH CaCl ₂	NO3 mg/kg	EC 1:5 dS/m	ECe	% 20
0-10	8.1	7.5	12	0.14	2	1.02
10-19	9.0	8.3	1.4	0.094	1	0.16
19-32	9.6	9.0	1.8	0.83	7	0.35
32-48	9.4	8.9	3	2.1	32	0.37

Soil texture

Soil depth

Soil texture in the same paddock strongly affects OC stock

Management practice can change OC stock at depth

The theory of OC increase by management

Perennial pasture

Add external

sources of carbon

Annual pasture

Adequate nutrition

Address soil limitations

Timely sowing

Stubble retention

Min or No tillage

Tillage

Bare soil Cultivation

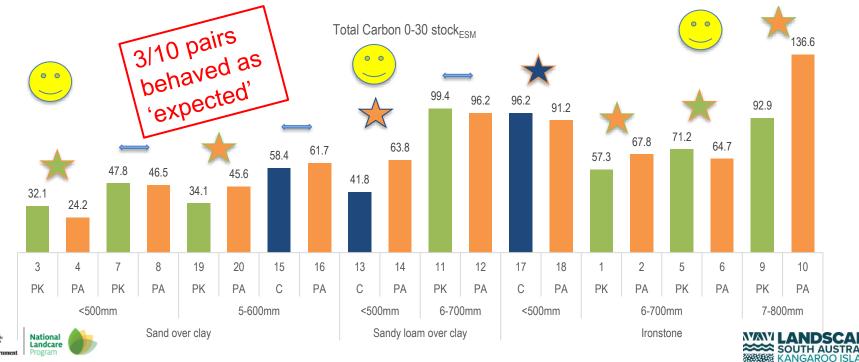
Maximise crop rotations

Maximise species mix

Maximise water use efficiency

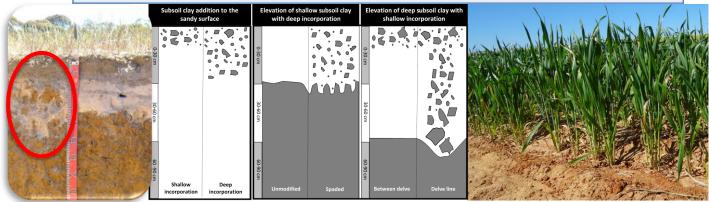
Maximise productivity

CROPPING


PASTURE

C stock by management practice

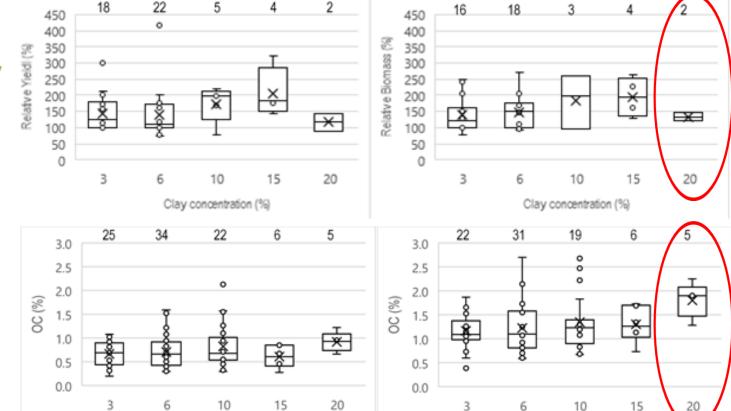
Management practices had variable effect on soil C


Abbreviations: P = Pasture, A = Annual, K = Kikuyu, C = Crop (no till, stubble retention).

Soil carbon in clay modified soils - Goyder/DEW

Clay modification increased OC stock average 4.9 tha⁻¹ (range -1.0 to 8.2 tha⁻¹)

	350-400	400-450	450-500	> 500
	mm	mm	mm	mm
Clay concentration		\checkmark	\checkmark	
Water storage	\checkmark	\checkmark	\checkmark	
Nutrition			\checkmark	\checkmark



Nutrients
Kirkby ratio
To create 1 T
humus need
80 kg N
20 kg P
14 kg S

Soil CRC Sandy Soil Project - Clay Concentration

Clay concentration (%)

Productivity

0-30 cm

Clay concentration (%)

OC Conc

0-10 cm

Amanda Schapel
Senior Soil and Land Management Consultant
0411 137 258
amanda.schapel@sa.gov.au

